The Deposit Business at Large vs. Small Banks

Adrien d'Avernas^{*} Andrea Eisfeldt[†] Can Huang[§] Richard Stanton[‡] Nancy Wallace[‡]

*SSE

[†]UCLA Anderson [‡]Haas School of Business, U.C. Berkeley [§]University of Illinois at Urbana-Champaign

23 Annual FDIC Bank Research Conference September 20, 2024

Purpose of the Paper

- Provide a model and empirical results that the deposit-pricing differentials of large and small banks can best be explained by:
 - Different production technologies of large and small banks,
 - Depositor preferences.
- We find that large banks:
 - Offer a broader menu of financial services,
 - Locate where depositors have lower deposit-rate elasticities and higher incomes,
 - Pay lower deposit rates.
- We define product market competition in the classic way: products differ by characteristics and prices reflect consumer demand for these characteristics.

1. Reduced Form Evidence

Banks Use Uniform Deposit Pricing (RateWatch 2001–2020) Time and Bank Fixed Effects

	CHECK \$2.5K		SAV \$2.5K	
FE	Time	Bank imes Time	Time	$Bank{\times}Time$
Observations R ²	52,618,184 0.351	51,125,529 0.915	54,525,429 0.474	52,999,174 0.942

- Consistent with Radecki (1998); Heitfield (1999); Biehl (2002); Park and Pennacchi (2009); Yankov (2024); Granja and Paixão (2023); Begenau and Stafford (2023).

Large Banks Set Lower Deposit Rates

RateWatch: Savings \$2.5K

- Large: One of the 14 large complex bank holding companies subject to the Supervisory Capital Assessment Program of 2009.
- Small banks provide rates 30 basis points higher on average.

Large vs. Small Banks Serve Distinct Geographies

Large banks in high population areas (2019)

- More highly populated areas with higher average incomes, higher house prices, and lower average ages.

Small Banks Offer Lower Rates when Co-Located with Large Banks RateWatch: Savings \$2.5K

- Inconsistent with small banks setting higher rates to compete against large banks.

2. Model

Depositor's Maximization Problem

- **Depositor** *i* in market *k* is endowed with \$1 and chooses from \mathcal{B}_k banks to maximize:

$$\max_{j\in\mathcal{B}_k}u_{ijk}=-\alpha_ks_j+\beta_kx_j+\epsilon_{ijk},$$

- s_j = deposit spread
- x_j = other financial services
- $\epsilon_{ijk} \sim F(\epsilon) = e^{-e^{-\epsilon}}$
- The market share for the deposits of bank j in market k is

$$d_{jk} = \frac{\exp(-\alpha_k s_j + \beta_k x_j)}{\sum_{i \in \mathcal{B}_k} \exp(-\alpha_k s_i + \beta_k x_i)}.$$

- With a mass M_k of depositors, the total demand is $D_{jk} = M_k d_{jk}$.

Bank's Maximization Problem

- Bank *j* chooses other financial services $x_j \in \{0, 1\}$, branches $b_{jk} \in \{0, 1\}$, and spread s_j

$$\max_{x_{j}, b_{jk}, s_{j}} \sum_{k=1}^{K} \left((s_{j} - c) D_{jk} - \kappa_{k} \right) \mathbb{1} \{ b_{jk} = 1 \} - \chi x_{j}$$

- *c* = cost of servicing deposits
- κ_k = fixed cost to open a branch in k, $b_{jk} = 1$, if and only if $(s_j c)D_{jk} \ge \kappa$.
- χ = cost of financial services
- Assume: uniform deposit spread s_j across branches
- Free entry condition pins down the number of banks in each market.

- 1. Small banks operate in one market
- 2. In collocation markets, small banks compete for deposits by offering higher rates
- 3. Large banks maximize profits by choosing a deposit spread that allows them to open branches in the largest possible number of markets

Large Bank Optimal Profit Elasticity, η^* , and Small Bank Spreads

3. Structural Model: Elasticity Estimation

Estimation: BLP random parameters logit demand model

- Define markets as 531 county clusters to capture local-branch customer preferences.
- Depositor in market k chooses cash, bonds or deposits of bank j to maximize:

$$U_{i,j,k,t} = \alpha_i \left(r_{j,k,t} - r_t^f \right) + \beta X_{j,k,t} + \xi_{j,k,t} + \epsilon_{i,j,k,t}$$

where

$$\alpha_i = \alpha + \Pi D_i + \sigma \nu_i$$

- $r_{i,k,t}$ = the deposit rate,
- $X_{j,k,t}$ = bank characteristics,
- $\xi_{i,k,t}$ = bank/market fixed effects and unobserved product characteristics,
- $\epsilon_{i,j,k,t} \sim F(\epsilon) = e^{-e^{-\epsilon}}$ and $\nu_i \sim N(0,1)$.
- Heterogeneous depositor price sensitivity α_i as a function of demographics D_i .

Estimation: BLP random parameters logit demand model

- Use supply shocks $Z_{j,k,t}$ as instrumental variables (Wang et al., 2022; Dick, 2008).

- Ratio of staff salaries to total assets.
- Ratio of non-interest expenses on fixed assets to total assets.
- County-level annual wage shock in commercial banking industry.
- Follow Nevo (2000) and Conlon and Gortmaker (2020) to estimate key parameters α , β , Π , σ .

Estimation Results

Parameter		Estimation	SE
Deposit Rate Large×Market Average Income Log(Employee per Branch) Log(Branch Number)	$ \begin{matrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{matrix} $	1.171 0.015 0.476 0.133	(0.046) (0.001) (0.019) (0.016)
Heterogeneous rate Sensitivity: Log(Household Income) Rate Sensitivity Dispersion	Π - σ	- <mark>0.533</mark> 0.957	(0.014) (0.038)
Observation Adjusted <i>R</i> ²	296,174 0.540		

- A one-standard-deviation increase in log income leads to a 0.490 decline in α .
- Banks in San Francisco (avg inc. \$135k) can offer deposit rate 1.09% lower than in Champaign (avg inc. \$50k) with same satisfaction.

Semi-Elasticity results

- Large banks are concentrated in low-elasticity markets.
- Small banks face higher rate elasticities and larger elasticity variation.

Semi-elasticity and Large Bank Market Share

- Large banks locate in markets with lower elasticities
- Large banks can charge higher spreads because of lower customers' elasticities
- High-income customers have lower elasticities

Conclusions

- Deposit businesses differ at small and large banks.
- We provide model-based and empirical evidence for these differences and their effects on deposit-pricing.
- We find that the key drivers of deposit-pricing differences are:
 - \rightarrow Heterogeneity of product characteristics,
 - \rightarrow Depositors' preferences.
- We find that large banks:
 - Offer a broader menu of financial services,
 - Pay lower deposit rates than collocated small banks,
 - Locate where depositors have lower deposit-rate elasticities and higher incomes.

References I

- Begenau, J., and E. Stafford, 2023, Uniform rate setting and the deposit channel, Working paper, Stanford University.
- Biehl, A. R., 2002, The extent of the market for retail banking deposits, Antitrust Bulletin 47, 91–106.
- Conlon, C., and J. Gortmaker, 2020, Best practices for differentiated products demand estimation with PyBLP, *The RAND Journal of Economics* 51, 1108–1161.
- Dick, A. A., 2008, Demand estimation and consumer welfare in the banking industry, *Journal of Banking & Finance* 32, 1661–1676.
- Granja, J., and N. Paixão, 2023, Bank consolidation and uniform pricing, Working paper, University of Chicago.
- Heitfield, E. A., 1999, What do interest rate data say about the geography of retail banking markets?, *Antitrust Bulletin* 44, 333–347.

References II

- Nevo, A., 2000, A practitioner's guide to estimation of random-coefficients logit models of demand, Journal of Economics & Management Strategy 9, 513–548.
- Park, K., and G. Pennacchi, 2009, Harming depositors and helping borrowers: The disparate impact of bank consolidation, *Review of Financial Studies* 22, 1–40.
- Radecki, L. J., 1998, The expanding geographic reach of retail banking markets, FRBNY Economic Policy Review 4, 15–34.
- Wang, Y., T. M. Whited, Y. Wu, and K. Xiao, 2022, Bank market power and monetary policy transmission: Evidence from a structural estimation, *Journal of Finance* 77, 2093–2141.
- Yankov, V., 2024, In search of a risk-free asset: Search costs and sticky deposit rates, *Journal of Money*, *Credit and Banking* 56, 1053–1098.